
mR

NASA Contractor Report 198174

ICASE Report No. 95-47
I

S
AN EXECUTABLE SPECIFICATION FOR THE MESSAGE

PROCESSOR IN A SIMPLE COMBINING NETWORK

David Middleton

(NASA-CR-1981_4) AN EXECUTABLE
SPECIFICATION FOR THE MESSAGE

PROCESSOR IN A SIMPLE COMBINING

NETWJRK Final Report (ICASE) 39

N95- 305c_,

p Unclas

G3/6I 0058541

Contact No. NAS1-19480
June 1995

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

AN EXECUTABLE SPECIFICATION FOR

THE MESSAGE PROCESSOR IN A

SIMPLE COMBINING NETWORK

David Middleton 1

ICASE

NASA Langley Research Center

Hampton, VA 23681-0001

Abstract

While the primary function of the network in a parallel computer is to commu-

nicate data between processors, it is often useful if the network can also perform

rudimentary calculations. That is, some simple processing ability in the network

itsetf, particularly for performing parallel prefix computations, can reduce both the

volume of data being communicated and the computational load on the processors

proper. Unfortunately, typical implementations of such networks require a large

fraction of the hardware budget, and so combining networks are viewed as being

impractical.

The FFP Machine has such a combining network, and various characteristics of

the machine allow a good deal of simplification in the network design. Despite being

simple in construction however, the network relies on many subtle details to work

correctly. This paper describes an executable model of the network which will serve

several purposes. It provides a complete and detailed description of the network

which can substantiate its ability to support necessary functions. It provides an

environment in which algorithms to be run on the network can be designed and

debugged more easily than they would on physical hardware. Finally, it provides

the foundation for exploring the design of the message receiving facility which

connects the network to the individual processors.

1 This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA. 23681-0001.

1 Introduction

While the primary function of the network in a parallel computer is to communicate

data between processing elements (PEs), it is often useful if the network can also perform

rudimentary calculations. That is, some simple processing ability in the network itself,

particularly the ability to do parallel prefix computations, can reduce both the volume of

data being communicated as well as the workload of the processors proper. Unfortunately,

typical implementations of such networks require a large fraction of the hardware budget,

and so combining networks are often viewed as impractical. For example, the message

processor in the IBM RP3 computer could implement Fetch_And_Add operations. The

hardware involved included, as well as the ALU, specialized associative memory to hold

messages until a response was received from the main memory modules [RP3]. That

research concluded that, while being a very powerful facility, a combining network did not

justify the hardware costs incurred in massively parallel computers.

The FFP Machine uses a combining network, and the characteristics of the machine

are exploited to allow a much simpler design [MagS&Stanat]. However, despite or perhaps

because the network is simple in construction, it involves many subtle interactions that

make the design difficult to verify and to use correctly. This paper describes an executable

model of the network which will serve several purposes. First, it provides a complete and

precise description of the network, an important precursor to constructing the network.

Second, it can substantiate the network's ability to support several functions whose efficient

operation is needed by the FFP Machine. Third, it provides an environment in which

algorithms to be run on the network can be designed and debugged more easily than

would be possible on physical hardware. Fourth, it provides the foundation for exploring

the design of the message receiving facility which connects the network to the individual

PEs.

Section 2 describes the characteristics of the FFP Machine that are relevant to the

design of the network. Section 3 describes the required behavior of, and then derives the

consequent structure of, the nodes in the network. Section 4 describes the form in which

algorithms are developed, and Section 5 illustrates this process with a series of operations

that are useful for the machine.

2 The FFP Machine as the context for the network design

FFP is one of Backus's Functional Programming languages [Backus]. An FP program

is viewed as a string of symbols which are repeatedly altered until a result is derived. The

1

FFP Machine follows this model directly by holding a running program in a linear array of

PEs (called the L array) that are interconnected via the leaves of a tree:structured network

of T cells.

Possibly the most novel and powerful feature in the FFP Machine is partitioning, an

operation which divides the machine's hardware resources (the L cells and T cells) into

disjoint area machines such that every available computation has its own dedicated virtual

computer assigned to it.

By the semantics of Backus's FP languages, each available computation is a contiguous

subset of the whole program and is entirely self-contained. This allows the various area

machines to be isolated from each other. Two important consequences follow from this:

first, if messages meet, they belong together in some sense, so their interaction is intensional

and the possibilities can be deliberately limited. Second, since messages that are unrelated

cannot meet, the network avoids the need for associative caches that are necessary if

arbitrary messages can arrive in indeterminate orders.

As a massively parallel computer (in the fine-grained sense of the term), the FFP

Machine is barred from using rich interconnection networks, such as hypercubes. The

leading choice for network topology is the simple binary tree, because of the logarithmic

diameter. Partitioning removes most of the contention that occurs at the root of the tree:

messages in each particular area machine have no effect on communication in any other

area machine.

Available computations may occur at any place in an FP program. Partitioning sup-

ports this by allowing area machines to be located at any position in the FFP Machine

without effect. Hence, while each area machine is also a binary tree, there are no alignment

or size constraints linking it to the physical tree structure. An area machine may contain

any number of the machine's L cells, starting at any position in the L array. Area machines

are almost always marginally unbalanced. By accounting for this, the network can be fit

within other network topologies. For example, meshes are a popular choice for massively

parallel networks, and this network can be easily embedded in a mesh. While the resulting

embedded trees would be significantly unbalanced (their depth being O(v_) rather than

O(lg(n))), designers of mesh networks expect this diameter anyway, and in return would

gain powerful new processing facilities for their system.

At the level of individual messages, the network is synchronizing in the sense that

each node will require a message from both inputs before generating an output message.

The result is that each PE that wants to communicatewill block until all PEs in the

area machine are ready to join in. This characteristic is both proper from the software

view and simple from the hardware view: since an areamachine is dedicated to a single

function, it is proper that when the computation is doing communication, all the cells

should be synchronizedand participate. It is simpler for the hardware becausethe need

for arbitration decisionsis avoided. Each area machinenetwork acts like a single (very

large) pipelined ALU, that takes a sequenceof messagesfrom each PE and from these,

generatesa sequenceof result messagesfor eachPE.

At the level of individual bits, the network is almost asynchronous,at least in a self-

timed sense of there being no clock. Each node in the area network awaits a signal from

both inputs before generating a result. In this way, the network is better able to avoid

problems that come with global clock signals, such as arbitration decisions and clock skew.

That area machines can be created anywhere leads to a style of computation that pro-

ceeds without using hardware (L cell) addresses for the data. Computations are developed

using a self-addressing style for accessing operands (the algorithm for generating this auz-

iliary representation, described in Section 5, was first debugged using an early version of

this system). Indeed, computations can be relocated invisibly, during execution, to a new

area machine composed of different hardware cells. For the purpose of network design,

this means that messages cannot be targeted to a particular destination PE, but rather

the receiver on its own must recognize and retrieve the messages intended for it.

The final network characteristic to be presented derives from two factors. First, com-

putations may grow in size, (for example, when the result of the computation occupies

more L cells than the initial expression did), and second, the left to right order of ele-

ments in a computation must be kept (in order that enclosing computations will still be

contiguous and to support the self-addressing character of operation). From these two

facts, it follows that when a computation grows, it may need to push aside neighboring

computations, before a partitioning operation allocates it a new contiguous area machine

that is large enough. Such a neighboring computation could be in the middle of a slow

message wave involving an arbitrary number of messages flowing sequentially through the

root of its area machine. To prevent these slow communication operations affecting other

computations, message wave_ are interruptible, to be resumed in a new area machine after

partitioning. Thus, each PE must be able to determine whether the messages it has sent

got through, so as to decide whether to resend them.

3

This section merely summarizesthe characteristicsof the FFP Machine as they apply

to the network design. A fuller description of the FFP Machine, and in particular the

motivations for these choices are described elsewhere [Magd&Stanat].

3 Network behavior

From the characteristics of the FFP Machine described above, the detailed behavior of

the network can now be derived. This system simulates the tree-structured network within

a single area machine as it performs a single message wave. Where necessary, this network

design tries to satisfy the constraints that the FFP Machine has for machine wide behavior

(for example, with partitioning and interrupts). However, the effects are not particularly

visible at the level that this system operates, so they are mostly ignored.

3.1 Broadcasting messages

Basically, each PE feeds a sequence of messages into the network. These sequences

are processed (merged and combined), then each PE receives back a sequence of messages

for its own use. Within the network, all messages head towards the root and are then

broadcast back to the entire area machine. The network makes no routing decisions at

all, which avoids the time and hardware costs of transferring and processing address fields

(which are not available in the ordinary sense, anyway, given the "self-addressing data"

philosophy of the machine design). Since there is no a priori knowledge, outside the

programmer's mind, of whether messages will be combining with others, all messages must

reach the area machine root anyway, so broadcasting them after that causes no additional

time delay (assuming that the PEs can deal with arriving messages at the same rate as the

network transfers them). Broadcasting messages directly provides for multi-casting within

the area machine, and also satisfies one last important requirement. With the possibility of

interrupts during a message wave, PEs must decide whether to resend messages afterwards.

By arranging that interrupts do not interfere with messages after they have left the root,

the incoming stream to each PE provides the acknowledge signals that let it determine

which of its messages got through before the interrupt occurred.

3.2 Sorting messages

While not inevitable, it follows naturally from the broadcast design that the messages

could be sorted as they approach the root of the area machine. As mentioned earlier, the

self-addressing style of computation imposes the responsibility for acquiring the appropri-

ate messages entirely on the receiving PEs. The main work of implementing FP functions,

4

like transpose and reverse, can be simply achieved by sorting the data in the network and

then having each PE pick its message according to its position in the incoming message

sequence.

Implementing sorting in the network defines some additional aspects of network behav-

ior. Each sequence of messages must end with a sentinel, which is called the End- Of- Wave

(EOW) message, to support the decentralized self-timed processing of messages as they

move towards the area root. Messages that undergo sorting will require a key field to

determine their order. In fact, the network allows sorting under multiple keys; for example

to transpose a matrix, the entries might be sorted first by column number and then by

row number. In general, the number of other fields in a message may vary, since PEs may

have different amounts of data they need to transfer.

A message processor is provided in each node of the network to combine two incoming

message streams into a single result stream. It has an ALU which can calculate the mini-

mum of two messages as its result: that one, having the smaller key, wins the comparison

and proceeds up to the next node. A message processor also has a Loser register in which

it stores the maximum of the two messages. It has enough state information such that

for the next comparison, it re-uses the value stored in the Loser register instead of taking

the following message from the same stream that supplied the loser. The EOW messages

from the two streams, being identical, will merge, and the Loser register will be marked

as being empty.

3.3 Combining messages

One of the original goals was to implement a combining network, that is, a network

which can perform simple arithmetic operations on messages. Messages are extended

to contain an opcode, and the ALU is extended to perform other operations, such as

integer addition for counting, bitwise operations, such as and and xor, and minimum since

that is already present for sorting keys. (Now, however, it combines messages and the

Loser register is left empty). Note that maximum and bitwise or can be accomplished

by performing appropriate inversions in the PEs. Multi-precision minimum and addition

are provided through additional opcodes. If a bit or byte serial operation is used in the

network, it is the responsibility of the PEs to supply operands in the appropriate order:

most significant bit(s) first for minimum, and least significant bit(s) first for addition.

Two more simple opcodes will be introduced later. While this is the full complement we

anticipate needing at the moment, in general any operation might be included, although

it is worth noting that operations like floating point arithmetic would be too complex
to justify their presence:suchoperations can be implemented fairly Cheaplyin the PEs

together with communication operations describedlater for shifting data.

3.4 The structure of messages

In general, every message consists of a series of optional parts called packets. The

network only sees packets; the overlying structure by which packets form messages is an

illusion in the mind of the designers. Each packet consists of a header and a value. The

header is further divided into two parts, the type, which includes EOW, Key and Value (an

unfortunate overloading of the term), followed either by an opcode for Value-type packets

(in which the value field contains the data to be combined), or a key number for key-

type packets (in which the value field contains the key). Since multiprecision addition is

provided, short va/ue fields are not constraining; the size of the value field is generally that

of an address integer, the word size necessary to label each PE uniquely in the machine.

3.5 Parallel Prefix calculations

Parallel prefix operations are a powerful capability that have appeared under several

names in the literature, including cumulative sums, scan operations, and Fetch-and-Add,

and are starting to appear in mainstream languages, such as High Performance Fortran

(as "prefix" and "suffix" versions of library functions) [HPF]. For this network, a parallel

prefix operation is defined in the following fashion. Given a sequence (xi, i = 0,1, ...)

distributed in left to right order through the PEs of an area, the parallel prefix sum under

OJ=i-1 xsome operation, O, is a sequence of values Yi, aligned with xi, where (yi = vj=o _,

i > 0), and (Yo = Unit(O)). This is the exclusive form of the parallel prefix operation; the

inclusive form, where y, incorporates the value xi, can be achieved locally by the PE and

so is ignored in the design of the network.

Parallel prefix operations can be implemented in the network by adding a second

ALU to the message processor. (Timesharing the first ALU is inappropriate since both

directions, up and down, will be busy at the same time.) As before, messages are combined

according to an opcode they contain, as they pass up through the network, but now, in

addition, the left message is kept in a (FIFO) buffer. Now, imagine that, during the

downsweep of messages, each node in the network receives the combination, under O, of

all values within the network to the left of the subtree rooted by that node. This value

passes to the left subtree unchanged (just as it did under simple broadcasting) since it is

also the sum of values to the left of that subtree. This value is combined with the message

which was kept from the left subtree during the upsweep. This result, being the parallel

6

prefix sum of all xi to the left of the right subtree, is sent to that subtree. In this way, the

message arriving at each PE is the result Yi and the total message traffic is the same as if

a single message had been sent through the network. The FIFO buffer feeding this second

ALU is called the T cell filter since it discards all messages whose types do not mark them

as parallel prefix messages.

This second ALU is identical to the first and so in particular, it expects the stream of

packets coming through the filter to be terminated by an EOW packet. Since the EOW

packet eventually arriving from the left subtree may be delayed by an arbitrary number

of intervening packets, relying on that packet raises the possibility of deadlock. For this

reason, the sub-sequence of parallel prefix packets within an overall stream of packets has

its own sentinel packet (End-Of-Cumulative-Left or EOCL), which the filter transforms

into an EOW packet, for the sake of the second ALU.

An interesting possibility arises with this network, which is usually absent in other

designs. The rigid left to right ordering of the values xi causes them to be combined

in that order. It follows that non-commutative operations yield well-defined results, and

these turn out to be extremely useful. The projection function 2nd, used in a parallel

prefix calculation, performs a right shift by a single position, that is (yi = zi-1, i = 1, 2...),

moving an arbitrary number of data values in no more time than it takes one message

to pass through the network. Implementing 2nd is a trivial extension to the opcode,

minimum. Minimum initializes its state prior to the comparison to show no winner* In

the same way, opcodes 2nd (and, later, /st) can be implemented by initializing the state

to force the left or right packet to win.

By symmetry, the network can implement parallel suffix operations, which in particular

will allow left shifts to be implemented by introducing a 1st opcode. The message processor

will require a second T cell filter to select and hold parallel suffix messages arriving from

the right child. It is probably better to add a third ALU to generate the message stream

being sent to the left subtree [Mag6]. This ALU combines the stream arriving from above

with the parallel suffix messages filtered from the upwards stream. While it is the case that

the second and third ALUs never operate at the same time, using a single ALU requires

merging the two filtered streams and then unmerging the ALU results to go to different

subtrees; this appears to involve greater delays and hardware resources overall.

* For multi-word minimum, there is a minimum-continuedopcode, which acts the same without initializing
the state, so that any previous decisions regarding a winner will continue to apply.

Schwartz describes an extension to parallel prefix operations called a group bit which

turns out to be essential in generating the auxiliary representation [Schwartz]. The se-

quence of values xi is broken into sub-sequences over which independent parallel prefix

calculations are performed, the boundaries of the sub-sequences being marked by group

bits in the packets. How the message ALU is extended to handle group bits can be derived

by considering a parallel prefix operation. First, group bits in packets must be ORed

together, since a boundary in the sequence in either left or right subtree is a boundary in

this whole subtree.

Next, imagine there is a group bit indicating a boundary in the right subtree. In this

case, the value coming from the right child should pass unchanged as the result from this

tree: any values from the left child belong to a different subsequence and so should not

contribute. This right hand group bit should not affect the value from the left subtree

passing through the filter; it will be used later, during the downsweep, to contribute to the

yi's intended for the right subtree.

Now, instead imagine there is a group bit indicating a boundary in the left subtree.

The related value will be in the same subsequence as the value from the right subtree

(assuming the right hand packet has no group bit), and so they can be combined as in the

original parallel prefix scheme. However, during the downsweep, this group bit will inhibit

the packet arriving from above, whose value represents the combined values from left of

this whole subtree, from contributing to the yi's intended for the right subtree.

Finally, considering the situation where the subtrees are individual PEs, it can be

seen that, for parallel prefix calculations, group bits mark the first element of each sub-

sequence. From these considerations can be derived the treatment of group bits, which

can be summarized as follows. They are logically summed into the result packet and when

they occur in the right-hand operand to an ALU, they override the opcode and force just

the second value to proceed. By similar consideration, the behavior of group bits can be

derived for parallel suffix operations, noting that group bits now mark the last element of

each sub-sequence.

Magd's approach to designing the message processors reduced all actions to variations

specified by the opcodes [Mag6], and this included the action of group bits. First it should

be noted that nothing has been said about the behavior of the message processor when

it combines packets containing different opcodes. Since no useful ability has been found

for allowing programmers to mix these operators, the behavior is defined to suit other

criteria and in particular, the implementation of group bits. It can be seen that a group

8

bit acts like the 2nd operator for parallel prefix calculations, and like the 1st operator

for parallel suffix calculations. By simultaneously (1) specifying that the opcode in the

result packet is the minimum of the two opcodes, and (2) encoding group bits as 2rid or

1st operators with minimal bit patterns, the correct implementation of group bits ensues.

This approach, while incurring no increase in hardware complexity, does introduce one

slight problem: Inside the message ALU, when combining is to occur despite the presence

of a group bit (for example, when the group bit occurs on the left in a parallel prefix

calculation), care must be taken finding the opcode since it has been lost from one packet

(having been replaced by the opcode implementing the group bit). The solution used in

this system is to use the left opcode for all parallel suffix operations, and the right opcode

otherwise. In this way, the correct operation, overridden by 2nd or 1st when appropriate,

will be performed.

The description of cumulative operations given earlier assumed that a unit value ap-

propriate for the particular operation would be injected into the root of the area machine

network. Partain and Mag6 invented an alternative which avoids any special behavior in

the network to generate, or carry and then insert, such values [Partain]. Notice that the

value generated at the root of the network is the cumulative combination of the entire

sequence x0..,, and in the general scheme, this is the value that is then broadcast down

through the network. If the rightmost PE is programmed to send any value but marked

with a group bit, then for parallel prefix operations, this value will reach the root unal-

tered. This method naturally allows any unit value to be provided. Similarly, the leftmost

PE can provide unit values for parallel suffix operations.

In general, when group bits are also being used explicitly to operate on sub-sequences,

the last element of each subsequenee (for parallel prefix; the t_rst element for parallel

suffix) must also send a copy of the appropriate unit value protected by a group bit. In

this situation, the group bits described earlier as abstractly starting (or ending, in the case

of parallel suffix operations) sub-sequences actually become redundant.

If a shift right operation is performed by a parallel prefix calculation with the 2nd

operator and no identity value is provided, then the rightmost value, x, reaches the network

root, returns, and becomes Y0. The result is a rotate right operation. At the hardware

level, this behavior is indistinguishable from deliberately using x,_ as the intended unit

value and protecting it with the prefix group bit, encoded as the the 2nd operator.

In some algorithms, not all PEs have a value to contribute. For algorithms doing a

parallel prefix addition, for example, PEs with nothing to contribute could explicitly inject

9

zeroeswithout difficulty. The sameis not true for shift operations, sincethe opcodes 1st

and 2nd do not have general identities. It turns out in this network that by sending no

message whatsoever in a shift operation, a PE allows a value on its one side to shift to a

destination on its other. In fact, the shift (and rotate) operation sends the value xi not

only to the PE contributing Xi+l but also to all the PEs in between. This is important to

the FFP Machine in a larger context because empty PEs may be interspersed throughout

each area machine, but even beyond that, this ability of values to jump over several others

turns out to be useful.

A message wave may contain several independent cumulative messages (parallel prefix

and suffix calculations), just as it can simple messages. For example, the auxiliary repre-

sentation algorithm described in the next section, has each PE inject a separate cumulative

packet for each array element. Cumulative messages can use keys to compartmentalize dif-

ferent calculations in one message wave. An example of this is illustrated in the algorithm

for the FP rotate left function, rot1, also described in Section 5. In that case, the keys are

essential for enabling PEs to align their contributions with those of other appropriate PEs.

3.6 Implementation of the Message ALU

With the detailed behavior of the network derived above, the message ALU can now

be summarized. Three identical copies of this ALU (together with two T cell filters) form a

message processor, which is the principal part of the T cell. (Besides the message processor,

a T cell contains configuration switches and their control hardware which operate during

partitioning and possibly some further arithmetic hardware which operates during storage

management)[Mag6&Stanat]. Specific restrictions on the inputs of the two downward

ALUs (for example, that one input [the one from a filter] has only cumulative messages on

it) are not exploited.

Each ALU consists of a simple arithmetic unit, a switch that selects its inputs, the

Loser register, and some internal state registers. The internal state consists of three parts,

totaling 5 bits: A carry bit for multi-word addition, two rain-state bits for multi-word

comparisons, and two loser bits to indicate which side, if any, has a packet currently

residing in the Loser register. That last element of the state controls the input switch to

the arithmetic unit; the first two affect the addition and minimum operations when the

arithmetic unit is actually combining packets, rather than just sorting them into a result

and a loser.

As mentioned earlier, each packet contains a header and a va/ue. The header is divided

into a 4-bit type field followed by either a 4-bit key number or a 4-bit opcode. The first type

10

bit distinguishes simple packets from cumulative ones. The second type bit distinguishes

right-to-left packets (parallel suffix) from left-to-right ones (parallel prefix). The third type

bit distinguishes end packets from "useful" ones (called body packets for no good reason).

The fourth and final type bit distinguishes key packets from value ones.

Packets with different types never combine: they are always sorted. End packets always

follow (that is lose to) other 'similar' packets, thus, the end type bit is 1 for end packets

and 0 for body packets. When one key packet loses to another, it moves to the Loser

register to try again. From there it should meet and lose to the va/ue packets belonging to

the winning key; thus, the key type bit is 1 for key packets and 0 for va/ue packets. (Since

it might also need to lose to additional keys if they are being used, the primary key uses 15

for its key number, the secondary key uses 14 and so on. For unrelated and somewhat less

compelling reasons, cumulative packets precede simple packets and left-to-right packets

precede right-to-left ones.

End packets contain an opcode which can be used, for example, to vote whether some

loop has completed. It is important to note that cumuIative end packets become simple

end packets within the T cell filters* and so are constrained to use opcodes and values

consistent with the simple end packets being sent in that particular message wave.

The following packet types are possible:

0000
0001

0010
0100

0101

0110
II00

II01

III0

--II, I0--

Cumulative Left value

Cumulative Left key
End Cumulative Left

Cumulative Right value
Cumulative Right key
End Cumulative Right
Simple value
Simple key
End Simple
unused.

The arithmetic unit generates two outputs from each pair of packets it receives. It

always feeds to the Loser Register the maximum of the packets, viewed just as sequences

of bits. From the state information it generates, the subsequent operation will decide

whether to recycle the Loser register's contents via the input switch.

* This translation imposes a constraint on the hardware that does not apply to this simulation system:
the hardware is intended to allow bit-pipelining, that is, message processing can be done bit-serially if that
is cost-effective. This translation requires that a filter receive three bits of the packet type in order to detect
that the simple packet is also an end packet and so should be altered instead of being discarded.

11

The result fed into the network from the arithmetic unit is calculated as follows. If

the packetshave different types, or if they are keys then ordering will occur. (Given the

former condition, the latter can be replaced by "or if one is a key" with either key being

picked arbitrarily). In this case, the result fed into the network is the minimum of the two

packets (viewed as bit strings) and the Loser register is marked as empty exactly when the

two packets are identical, which can happen with key packets.

When the packet types match and axe not keys, the Loser register will be marked as

empty and the packets will combine to feed a result into the network. The opcode (in

fact the entire header field) in the result packet is the minimum of the two headers being

combined. As noted above, the opcode being applied may differ from this. If the packets

are right-to-left packets, then the left opcode is applied (because the right opcode might

have been overwritten by a parallel suffix group bit which proceeds but should not be

performed in this ALU); otherwise, the right opcode is applied.

The following opcodes are implemented in this system:

0000 "??(0)"
0001 "(Order)"
0010 "2ndC"

0011 "IstC"

0100 "Min"

0101 "MinC"

0110 "2nd"

0111 "lst"

1000 "+"

1001 "+C"
1010 "And"
1011 "Xor"

1100 "??(c)"

1101 "??(d)"

1110 "??(e)"

1111 "??(f)"

Unused (to enable broader error detection in system).

Notes ordering inside ALU - should never appear in actual packets.

Group bit for cumulative (left-to-right) packets.*

Group bit for cumulative (right-to-left) packets.*

Minimum (combining, not sorting).

Minimum continued (rain state not initialized).

Take second value (for right shifts).

Take first value (for left shifts).

Integer addition (carry cleared initially).

Integer addition continued (carry not cleared).
Bitwise And.
Bitwise Exclusive Or.

Unused.

Unused.

Unused.

Unused.

Figures 1 and 2 shows the C function, malu_stepO, which defines the behavior of

the arithmetic unit in processing a single pair of packets. While the software system

being described matches the intended hardware behavior, it does not follow likely hardware

implementation. Though this might pose a challenge should the system be connected to

actual hardware (for testing, for example), it allows significant gains in speed and clarity.

* Since there are op¢odes to spare, a separate group bit opcode has been created from the 2nd and Ist
below. As far as current algorithms have gone, those are redundant.

12

malu_tep (Ltype, Lhead, Lval, Rtype, Rhead, Rval, 0ut, Loser, State)

unsigned char Ltype, Lhead, Rtype, Rhead ;
int Lval, Rval ;

struct PacketType ROut, *Loser ;

unsigned char *State ;

{
unsigned char

unsigned char

loserstate =

minstate =

carrystate =

if (debug>20)

opcode ;

loserstate, minstate, carrystate ; /* Local State subfields:

*State _ Sloser ;

*State & Smin ;

*State _ Scarry ;

./

fprintf(stderr,"\nState: rec-ZO2X,(Z02X:Z02X:Z02X) Zd Zd Zd Zd\n",

*State, loserstate, minstate, carrystate,

Ltype, Lhead, Rtype, Rhead) ;

/* this is the operation to be done in the ALU, vs that sent in result. */

opcode = ((Ltype!=Rtype)][((Ltype_HVK):HK)) ? Oo

: KeyMask _ (((Ltype&HLR)==HR) ? Lhead : Rhead) ;

loserstate = ((opcode != 0o)]I ((Lhead == Rhead) &_ (Lval == Rval)))
v SNoLoser

: (((Lhead < Rhead) l] ((Lhead == Rhead) &_ (Lval < Rval)))

? SRLost : SLLost) ;

if (debug>20) {

fprintf(stderr, "logic parts Zd (= Zd II Zd _t Zd) Zd (= Zd II Zd && Zd)\n",

((opcode != 0o) II ((Lhead == Rhead) && (Lval --= Rval))),

(opcode != 0o), (Lhead == Rhead), (Lval == Rval),

((Lhead < Rhead) II ((Lhead == Rhead) && (Lval < Rval))),

(Lhead < Rhead), (Lhead == Rhead), (Lval < Rval)) ;

fprintf(stderr,"0pcode Zs, new loserstate Z02X.\n", 0pSyms[opcode], loserstate) ;

}

/* Now set up contents of loser register */

/* Just like probable hardware, loser gets value even if empty */

/* Easiest to set up Out assuming Order now, and overwrite as needed later. */

/* If combining, will send min opcode, ie effectively do 0R of group bits */

if ((Lhead<Rhead) [1 ((Lhead==Rhead) && (Lval<Rval))) {

Loser -> header = Rhead ; Loser -> value = Rval ;

Out -> header = Lhead ; 0ut -> value = Lval ;

)
else {

Loser -> header = Lhead ; Loser -> value = Lval ;

Out -> header = Rhead ; Out -> value = Rval ;

)

if (debug>20) {

PrintPacket(stderr, *Loser,"-loser, ") ;

PrintPacket(stderr, *0ut,"-min out,") ;

)

Figure 1. The behavior of the message processor ALU (part I).

In particular, where the hardware ALUs are intended to behave in a pipelined fashion down

to the bit level, each simulated ALU performs all its processing at one time, without any

overlap. This requires that message buffers be inserted at each interface. The arguments

to me_lu_step 0 consist of the left and right input packets (broken into their fields for

13

/* Now initialise alu state for various opcodes */

switch (opcode) {

case ON : minstate = SEq ;

break ;

case 01 :

case 01c : minstate = SLess ;

break ;

case 02 :

case O2c : minstate = SGtr ;

break ;

case Omc : /* initial value of received state will be used */

break ;

case Op : carrystate = SNoCarry ;
break ;

case 0pc : break ;

case 0a : break ;

case 0x : break ;

case 0o : break ;

default : fprintf(stderr, "(Zd)used bad opcode [Z02X]\n", II, opcode) ;

break ;

}

/* Now do various opcodes */

switch (opcode) {
case O1 :

case 01c :
case 02 :

case 02c :

case Om :

case Omc :

case Opc :

case Op :

case Oa :

if (minstate==SEq) { /* calculate new state */

if (Lval<Rval) minstate = SLess ;

if (Lval>Rval) minstate = SGtr ;

}
/* calculate new value */
0ut -> value = (minstate-----SLess) ? Lval : Rval ;

break ; /* end of processing min family */

0ut -> value = (Lval & ValueMask) + (Rval & ValueMask) +

(((carrystate & Scarry) --= SIsCarry) ? I :

carrystate = ((0ut->value) & PacketCarry)

SIsCarry : SNoCarry ;

0ut -> value &= ValueMask

break ;

/* no state change */
0ut -> value = Lval & Rval ;

break ;

Qut -> value = Lval Rval ;

break ;

I* This is initialised when loser is set up */

break ;
break ;

case Ox :

case Oo :

default :

}
*State = minstate + loserstate + carrystate ;

if (debug>20) {

fprintf(stderr, "\nStates: final-Z02X, loser-Z02X, min-Z02X, carry-ZO2X\n",

*State, loserstate, minstate, carrystate) ;

PrintPacket(stderr, Out," -final out.\n") ;

}
}

Figure 2. The behavior of the message processor ALU (part I.D.

o) ;

convenience), the result packet, the new contents of the Loser register, and the state

14

reflecting conditions sensed by the ALU during the operation.

First, the code determines from the headers whether an ordering or combining action

will occur and saves this information in an internal opcode variable. Second, it determines

whether the Loser register will be empty. Third, the Loser and Out values are calculated

under the assumption that ordering will occur. (Unlike hardware, the code has no difficulty

altering these values when this assumption is incorrect, and this approach is more concise).

Fourth, the initial state of the ALU may be set to prepare for applying an opcode. Finally,

the opcode is applied to the pair of input values. The calculation creates state which is

returned in the State argument for the subsequent call. These steps are interleaved with

trace output statements that may be performed depending on the depth of debugging in

effect.

Filter(In, Out, side)

struct PacketType *In, *Out ;

char side ;

{
char No_EndPkt = I ;

while (BadOrESPacket(*In, (char) 0) != EndStream) {

if (((In->header)_(HCS+HLR)) == (He+side)) {

Out -> header = In -> header ;

Out -> value = In -> value ;

if (((Out->header) & HBE) == HE) {

/* No. change EC{L/R} to ES for relevant down malu. */

Out->header]= (HCS+HLR) ; /* ES is ESRV by convention */

/* ? Should this step clear X for safety ? */

/* Mo, should already be clear in well formed packets */

No_EndPkt = 0 ;

}
Out++ ;

}
In++ ;

}
if (.oZnapkt) {

fprintf(stderr, "\t\tHad to insert End packet in _s filter.\n",

(side==HR)?"right":"left") ;

Out -> header = HS + HR ;

Out++ -> value = 666 ;

}
}

Figure 3. The behavior of a _Iterin the message processor.

Figure 3 shows the C function that defines the behavior of a filter. The procedure

takes a list of packets and a note indicating whether this filter transmits left-to-right or

right-to-left packets, and returns the list of packets matching that type. In addition the

appropriate cumulative end packet is transformed into a simple end packet.

15

malu (LeftList, RightList, OutList, Loser, State)

struct PacketType *LeftList, *RightList, *OutList, *Loser ;

unsigned char *State ;

{
struct PacketType rOut = DutList ;

do {
struct PacketType *Lp, *Rp ;

if(debug>lO) {

fprintf(stderr,"ZcZc ",

((*State&Sloser) == SLLost) ? 'B' : 'L',

((*State_Sloser) == SRLost) ? 'B' : 'R') ;

}
Lp = ((*State_Sloser) == SLLost) ? Loser : LeftList++ ;

Rp = ((*State&Sloser) == SRLost) ? Loser : RightList++ ;

if(debug>t0) {

PrintPacket(stderr, *Lp," (*) ") ;

PrintPacket(stderr, *Rp," ==> ") ;

)
malu_step((unsigned char) (Lp->header & TypeMask),

Lp->header,

Lp->value,

(unsigned char) (Rp->header _ TypeMask),

Rp->header,

Rp->value,

Out, Loser, State) ;

if(debug>t0) {

PrintPacket(stderr, rOut,".") ;

fprintf(stderr,"Zs[ZO2X].\n",

(BadOrESPacket(*Dut, (char) 0)! = EndStream)

? "rpt" : "end",

*State) ;

}
}

.hile (BadOrESPacket(*(Out++), (char) O) != EndStream) ; /* end do */

if (debug>lO) {

fprintf(stderr,

"\nThe last two packets processed from the input lists are:\n") ;

PrintPacket(stderr, *--LeftList, "") ;

PrintPacket(stderr, *--RightList, "") ;

)
}

Figure 4. The behavior of the ALU in the message processor.

Figure 4 shows the C function that defines the behavior of the message processor in

performing a complete message wave. It consists of a loop that repeatedly calls malu_stepO

until a simple end packet is generated. It takes as arguments two lists of input packets,

which it will merge and combine into an output list. In addition, it contains a Loser

register and a State variable. Before combining two packets, the loop body must first use

the state information to determine which of the three inputs (the Loser register and the

two streams of packets entering the message ALU from elsewhere) will provide the two

inputs to malu-step O, which returns a result packet to proceed into the network, new state

information, and possibly a packet in the Loser register.

16

4 The structure of the simulator

The previous sections described the abstract network; this section describes the actual

simulator which models the behavior of an area network on a single wave of messages.

Algorithms usually involve multiple message waves; this is accomplished by constructing

a pipeline of individual programs. The first two programs usually generate the auxiliary

representation; these are the first examples given in the next section. (A couple of simple

rules are provided later that help the output from a program be both convenient for

subsequent programs to read, and clear for human consumption).

The simulation of any particular message wave consists of four parts, a file of constants

(".constants.h"), a file of support routines (".subrs.c") which includes the code for the

ALU shown in the previous section, the procedure "main" which animates the system (in

".skeleton.h"), and the primary file which contains the routines that specify how each node

in the network behaves, and incorporates the other three files at appropriate points.

Algorithm designers can ignore all but the primary file, and in fact can further focus

their attention on the three parts that deal with the leaf processors. Those three parts

specify how the message system is going to be used in a particular algorithm, while the

remaining parts simply define how message processing occurs in general, and so remain

unchanged. Properly, these other parts may well belong, from a designer's point of view,

in a different file.

The primary file begins by declaring a structure, struct LcelIType, specifying the local

variables used by a leaf processor during the algorithm. Following that, the primary file

declares struct TcelIType to contain the locM variables for the internal nodes, and then it

includes ".skeleton.h'.

The file ".skeleton.h" starts by declaring arrays of these two structures, together with

naming macros (like "Self", "LeftChild" and "RightChild") which construct a tree within

these arrays. The naming convention defines the children of the tree node residing in

the i'th array element as residing in array elements (2i) and (2i + 1). The root resides

in element (1); element (0) is unused. The tree is perfectly balanced with a power of 2

number of elements. This is not essential, but otherwise, connecting leaf processors into

the network is more complicated* and no advantage is gained.

* Imagine a tree with two internal nodes, numbered 1 and 2. Internal node (2) is the left child of internal
node (1). Leaf processors (0) and (1) are the children of internal node (2) while leaf processor (2) is the right
child of internal node (1).

17

The naming macros use a global variable, II, as a reference point to identify a node;

from there it is used to calculate subscripts for related nodes. The procedure "main" (in

".skeleton.h") iterates through this variable to focus activity on each node of the tree in

turn, first in an upsweep then in a downsweep. Within these loops, the functions specifying

cell behaviors are called appropriately. Thus, these routines should only access local cell

data via the naming macros. Under this scheme, each function looks like an entirely

self-contained and active part of a completely distributed algorithm.

These functions, which complete the primary file, are:

InitL ()

InitT ()

Lup ()

Tup ()
Troot ()

Tdown ()

Ldown ()

PrintT ()
PrintL ()

Initialize the leaf node, reading its local data from input.
Initialize the state of an internal node.

To process upward packets in a cell having leaf children.

To process upward packets in a cell having internal children.

To process messages in the root of an area.

To process downward packets in a cell with internal children.

To process downward packets in a cell having leaf children.

Print any desired final information from an internal node.

Print the results a processor acquired during the message wave.

Figure 5 shows the code for Troot O. It defines both the upward and downward process-

ing of packets in the root of an area machine. It is the concatenation of the two procedures,

TupO and TdownO, with the addition that it reports the number of packets sent out since

that is the primary factor determining the speed of a communication wave.

Only the routines InitL 0 and PrintL 0 actually concern the algorithm designer. The

others simply perform the message processing, so they are left out of the following exam-

ples. These two routines show some recurring patterns throughout various algorithms they

implement.

InitL 0 starts by reading the data for its L cell from input. Usually (at least when the

auxiliary representation has been generated), each L cell's data occupies its own line of

input. To simplify parsing input, any potentially blank string field has "H<backspace>"

appended. This disappears when viewing the output on a screen and enables the standard

library routines to read the string. After some local processing, InitL 0 prepares the list

of packets for the L cell to send into the network. It is important that empty L cells

contribute exactly the three end packets or else the network will hang. By convention,

the opcode in the simple end packet is and for those cases when the PEs need to vote on

18

struct TcellType {

struct PacketType

_signed char

void Troot () {

Up[ListLength],

Down[ListLength],

FilterLeft[ListLength],

FilterRight[ListLength],

LoserUp,

LoserLeft,

LoserRight;

StateUp, StateLeft, StateRight ;

malu (LeftChildT.Up, RightChildT.Up, Self.Up, &Self. LoserUp, &Self. StateUp) ;

fprintf(stderr,"Root malu passed %Id packets.\n", StreamLength(Self.Up)) ;

Filter (LeftChildT.Up, Self.FilterLeft, HL) ;

Filter (RightChildT.Up, Self. FilterRight, HR) ;

malu (Self.Up, /* skip copying to the Down list */

Self.FilterLeft, RightChildT.Down, &Self.LoserRight, &Self.StateRight) ;

malu (Self. FilterRight, Self.Up, /* skip copying to the Down list */

LeftChildT.Down, &Self.LoserLeft, &Self.StateLeft) ;

if (debug>S) {

char label[40] ;

sprintf(label,"\t\t{malu(_2d) (root) sent up, left, right:}\n",II) ;

PrintList(stdout, label, Self.Up) ;

PrintList(stdout, "", LeftChildT.Down) ;

PrintList(stdout, "", RightChildT.Down) ;

)
}

Figure 5. Processing in the root of an area network.

whether they have completed some iterative process. Consequently, the two cumulative

end packets must also use that opcode.

PrintL 0 starts by processing the incoming packet list. For the corresponding hardware

to operate fast enough, restrictions are placed on how much PrintL() can do at this point.

In the current system, the PE is allowed to count incoming messages and save a short

contiguous set from within the arriving stream. It turns out that although interrupts

are supposedly transparent to the system, one of their consequences is that key packets

mav occur multiple times in the arriving stream. Consequently, this system counts non-key

packets and on reaching some locally calculated value, notes the current position in the list

of incoming packets. Following this, PrintL 0 is free to use this packet and a small number

of subsequent ones to generate new values in the PE. This approach is best illustrated in

the transpose example given in the next section. Finally, PrintL 0 prints its local data,

following the appropriate rules described above.

Once compiled, the principal program is linked with the support routines residing in

the file ".subrs.c". They include ones to read and write packets, both individually and in

streams, and the filter and message processor functions that were presented in the previous

section.

19

Finally, it should be noted that the example algorithms described in the next section

are deliberately not robust against illegal input (for example, FFP expressions that are ill-

formed), since their purpose is clarity as demonstrations and not reliability as production

code.

5 Example communication algorithms

Several examples are now presented to show not only how this system simulates the

message network, but also to show how the message network implements certain interesting

operations for the FFP Machine.

5.1 Generating the auxiliary representation for FFP expressions

In Backus's Functional Programming languages, data are constructed hierarchically

from atoms (such as integers), using sequence constructors. An FFP object can be written

as an expression tree in which each atom corresponds to a leaf node in the tree and

each sequence corresponds to an internal node whose children axe the expression trees

corresponding to the sequence elements. (There is no connection between the expression

tree and the tree structure of either the area machine or the overall physical network;

indeed it is not even binary).

In order to carry out its actions, the FFP Machine augments the FFP objects with

an auziliary representation which describes their structure in a way suited to the self-

addressing style of computation. The auxiliary representation has five components. The

index provides a unique identifier for each PE in an area machine, by numbering the

symbols from left to right. The relative level number is the depth of a symbol within the

expression tree. The directory is the historical term for the component of the auxiliary

representation that describes the position of a symbol within the expression tree. Each

element of the directory specifies a particular child of the sequence element reached by

the preceding directory elements. The directory is restricted to length four, that being

the most detail that has been needed for the FFP Machine to implement the functions

considered to date. (This arises in matrix multiplication: the first element distinguishes the

function from the operand, the pair of matrices to be multiplied, which are distinguished

by the second element. The third and fourth entries then label rows and columns). The

final two components of the auxiliary representation are a pair of boolean arrays, firstL and

la_tL, which are derived from the relative level number and the sequence bracket symbols

in the FFP expression. They mark the first and last PEs holding an FFP object at a given

depth. Together with directory elements, they provide a simple way to mark locations

2O

where actions must be performed and are used often enoughto be worth creating at the
outset.

The algorithms for generatingthis auxiliary representationare subject to the rules for
how FFP expressionsmay actually be representedin the L array. Empty PEs may be

interleaved with others in the area machine: this complicatesthe auxiliary representation

algorithm becausethe samevaluesshould be generated for the symbols irrespective of
whereempty PEs are located. There arealso severalalternatives regarding the amount of

an FFP expressionthat each PE can hold. The variousalgorithms describedhere assume

that such a leaf processormay hold an arbitrary number of left sequencebrackets, <n,

an atom or function parenthesis,and an arbitrary number of right sequencebrackets, >'_;

however, the algorithm should work basically unchanged,even with significant variation

of the chosenrepresentation.

A leaf processor(that is, PE) may hold severalsymbols;the auxiliary representation is
calculatedwith respectto the main symbolin the PE, not the sequencebrackets. The index

is calculated by counting non-empty PEs, using a parallel prefix sum. The relative level

number is calculated by counting the number of (unmatched) opening sequence brackets

to the left of the main symbol in the PE. That means, each PE contributes to the parallel

prefix sum calculation, the difference between the opening and closing brackets that it

holds. Since the relative level number relates to the main symbol in a PE, each PE must

add the number of left sequence brackets that it itself holds, to the result it gets from

the parallel prefix sum. The algorithm "addrl", shown in Figure 6, calculates these two

components of the auxiliary representation.

The value directory[i] counts the number of complete objects having a relative level

number of (i) within the same level (i - 1) object. Such complete objects are identified

with atoms or closing sequence brackets having re/afire level number i; thus, the directory

calculation is a separate message operation because it cannot begin until the PE already

has its relative level number. An object at level i should also prevent any count of deeper

objects (level > i) from passing across it; this is achieved by injecting a group bit (together

with zero as the addition unit value to begin the subsequent count) into calculations carried

out at deeper levels. The calculation of the directory, together with those of firstL and

lastL, since they also depend on reIative level number, are shown in Figure 7.

21

/* Calculate RLN and Index using cumulative message waves */

struct LcellType {
int lb, rb, rln, index, dir[4] ;
char symbol[80], empty, firstL[4], lastL[4] ;
struct PacketType Up[ListLength], Down[ListLength] ;

};

void InitL() {

int msg_count ;
char line[80] ;

/s read local L cell data from input */

/* Send packets */

if (II == Size-l) { /* last cell in area - create identities for CL */

L.Up[msg_count] .header -- HC + HL + 02c ; /* RLN ./
L.Up[msg_count] .value = 0 ;

}
else {

L.Up[msg_count] .header = HC + HL + Op ; /* RLN */

L.Up [msg_count] .value = L.Ib - L.rb ;

}
msg_count++ ;
if (II == Size-l) { /* last cell in area - create identities for CL *I

L.Up[msg_count].header = HC + HL + 02c ; /* Index */
L.Up[msg_cotmt] .value = 0 ;

}
else { /* Index: unique numbering over non empty cells, and o.w.

L.Up[msg_count].header = HC + HL + Op ;
L.Up[msg_count].value = (!L.empty) ? 1 : 0 ;

)
msg_count++ ;

L.Up[msg_count] .header = HE + HC + HL + Oa ; /* ecla */
L.Up[msg_count] .value = 1 ;
msg_count++ ;
L.Up[msg_count].header = HE + HC + HR + Oa ; /* ecra */
L.Up[msg_count].value = I ;

msg_count++ ;
L.Up[msg_count].header = HE + HS + HR + Oa ; /* ea - ESRV by convention */
L.Up[msg_count] .value = 1 ;
msg_count++ ;

}

void PrintL() {

int msg =0, pkt_count =0, save ;

for (; ;) { /* RECEIVE PACKETS */
if (BadOrESPacket(L.Dovn[Isg], (char) O) == EndStream) {

fprintf(stderr,"Filter in 7,1d hit ES too soon.\n °', II) ;
break ;

}
if (pkt_count == 0) { save = msg ; break ; }

/* Keys repeat after interrupts --> only count non keys. */

if ((L.Down[msg].header_HVK) != HK) pkt_count++ ;
msg++ ; /* deal with next packet. */

}
L.rln = L.Down[save+0].value + L.Ib ; /* USE RETAINED PACKETS */
L.index = L.Down[save+l].value ;

/* Print out L cell contents here */

}

Figure 6. Calculating Index and Relative Level Number.

repeatable */

22

/* Create directory and firstL/LastL using RLN */

struct LcellType {

int Ib, rb, rln, index, dir[4] ;

char symbol[80], empty, firstL[4], lastL[4] ;

struct PacketType Up[ListLength],

Down [ListLength] ;

};

void InitL() {

char brackets [80], c ;

int msg_cotmt, i ;

msg_count = 0 ;

/* read local L cell data from input */

/* Send packets */

{ int object ;

for (msg_count=O ; msg_count<4 ; msg_count++) {

object = L.rln-L.rb ;

L.Up[msg_count].header = ((II == Size-l) II (msg_count > object))

? HC+HL+02c : HC+HL+Op ;

L.Up[msg_count] .value = ((II==Size-l) l[(msg_count !=object)

?

}

L. Up [msg_count]. header

L. Up [msg_count]. value

msg_count ++ ;

L. Up [msg_count] .header

L. Up [msg_count]. value

msg_count ++ ;

L. Up [msg_count]. header

L. Up [msg_count]. value

msg_count ++ ;

}
}

void PrintL () {

II (L.rb==O&&L.s_bol[O]=='\O'))

/* I_ore '<' when rest is empty */

: I;

= HE + HC + HL + Oa ; /* ecla */

=i;

= HE + HC + HR + Oa ; /* ecra */

=I;

= HE + HS + HR + Oa ; /* ea - ESRV by convention*/

= I ;

int msg =0, pkt_count =0, save, i ;

for(;;){
if (BadOrESPacket(L.Doun[msg], (char) O) == EndStream) {

fprintf(stderr,"Filter in Y,ld hit ES too soon.\n", II) ;

break ;

}
if (pkt_count == 0) { save = msg ; break ; }

if ((L.Down[msg] .header&HVK) != HK) pkt_count++ ;

msg++ ; /* deal ,ith next packet. */

}

for (i=O ; i<4 ; i++) {

L.dir[i] = L.Down[save+i] .value + (i<=L.rln);

L.firstL[i] = (i >= L.rln-L.ib) _& (i < L.rln+(L.symbol[O]!='\O')) ;

L.lastL[i] = (i >= L.rln-L.rb) && (i < L.rln+(L.symbol[O]!='\O')) ;

}

/* Print out L cell contents here */

}

Figure 7. Calculating directories,firstLand lastL.

23

Each PE sends four parallel prefix sum packets into the tree network. For the highest

level object that it finishes,* it sends a value of 1 and for a11 others it sends O. Down to

the level of that object, it sends the addition opcode with zero; below that level it sends

a group bit with the addition unit of zero to separate groups and to provide the identity

for the next group's cumulative sum (that is, counting within the sequence to the right of

this one).

5.2 Compacting brackets

Given the way FFP symbols may be allocated to PEs, a series of left brackets followed

by an atom might be either stored in a single PE or spread over many. Compaction,

shown in Figure 8, is the process of causing FFP expressions to occupy a minimal number

of PEs. The method described here moves brackets towards the appropriate nearby atom

(or towards each other in the case of a deeply embedded empty sequence). Using prefix

sums over left brackets, with group bits supplied where atoms or right brackets occur,

the value received by a PE with an atom is the brackets immediately to its left, that can

be moved to it. The PE increments its left bracket register by that amount, while the

other registers in the group clear their brackets. In a similar fashion, right brackets can

be replicated towards the left with a suffix sum. Care must be taken that left and right

brackets moving towards each other do not pass.

5.3 Transposing arbitrary FFP matrices

In contrast to the previous algorithms which used cumulative operations, transpose,

shown in Figure 9, uses simple messages with sorting. PEs send the contents of their three

symbol registers, preceded by a pair of keys. Simply, the primary key is the column number

and the secondary key is the row number, both of which are entries in the directory. This

however fails to transpose matrices whose entries are more complicated than just a single

atom. Instead, the index is used as the secondary key. This provides the same effect, but

also transfers multi-symbol objects together.

To provide the correct structure around the reordered elements, the initial sequence

brackets delimiting the rows are deleted and new pairs of sequence brackets are created

delimiting the final rows (what were initially the columns). For this, the number of rows

must be counted and broadcast beforehand to enable each object in the last row to create

* For example, a PE containing "1>" holds the end of both the atomic object, 1, and the sequence of
which it is the last element. The sequence is the higher level object, so the relative level number of the ">"
(which is rln - 1) is the value used.

24

/* Compact brackets together, assuming <* P >* symbol registers */

struct LcellType {

int Ib, rb, rln, index, dir[4] ;

char symbol[80], empty, firstL[4], lastL[4] ;

struct PacketType Up[ListLength], Down[ListLength] ;

};

void InitL() {

char c, brackets[80] ;

int msg_count =0, i ;

/* read local L cell data from input */

/* Send packets */

if (L.symbol[O]!='\O' I_ L.rb>O) { /* group bit separating '<' sequences */

L.Up[msg_count] .header = HC + HL + 02c ;

L.Up[msg_count] .value = 0 ;

}
else {

L.Up[msg_count] .header = HC + HL + Op ; /* combine brackets */

L.Up[msg_count] .value = L.ib ;

}
msg_count++ ;

L.Up[msg_count].header = HE + HC + HL + Oa ; /* ecla */

L.Up[msg_count].value = 1 ;

msg_count ++ ;

if (L.symbol[O]!='\O' [[L.Ib>O) { /* group bit separating '>' sequences */

L.Up[msg_count] .header = HC + HR + Olc ;

L.Up[msg_cotmt] .value = 0 ;

}
else {

L.Up[msg_count] .header = HC + HR + Op ; /* combine brackets */

L.Up[msg_count] .value = L.rb ;

}
msg_cotmt++ ;

L.Up[msg_count].header = HE + HC + HR + Ua ; /* ecra */

L.Up[msg_count].value = I ;

msg_cotmt++ ;

L.Up[msg_count].header = HE + HS + HR + Oa ; /* ea - ESRV by convention */

L.Up[msg_count] .value = I ;

}

void PrintL() {

int msg =0, pkt_count =0, save ;

for<;;){
if (pkt_count == 0) { save = msg ; break ; }

/* Keys repeat after interrupts --> only count non keys. */

if ((L.Down[msg].header&HVK) != HK) pkt_count++ ;

msg++ ; /* deal with next packet. ,/

}

if (L.symbol[O]!='\O' II L.rb>O)

L. Ib += L.Down[save+O] .value ;

else

L.ib =0 ;

if (L.symbol[O]!='\O ' II L.Ib>O)

L.rb += L.Down[save+R] .value ;

else

L.rb = 0 ;

/* Print out L cell contents here */

}

Figure 8. Compacting brackets.

25

/* Transpose a general matrix by sorting.

struct LcellType {

int

char

struct PacketType
int

};

void InitL() {

char c, brackets [80] ;

int msg_count =0, i ;

int newlb, newrb ;

/* read local L cell data from input */

newlb = L.ib ;

newrb = L.rb ;

if (L. firstL[1])

if (L.lastL[O])

if (L.lastL[l] && L.dir[1]<L.length)

if (L.firstL[2] _& L.dir[1]==1)

if (L.lastL[2] _& L.dir[1]=L.length)

/* Send packets */

L. Up [msg_count] .header

L. Up [msg_count] .value

L. Up [msg_count] .header

L. Up [msg_count]. value

if (!L.empty) {

L. Up [msg_count]. header

L. Up [msg_count] .value

L. Up [msg_count]. header

L. Up [msg_cotmt]. value

L. Up [msg_count]. he ader

L. Up [msg_count]. value

L. Up [msg_count]. header

L. Up [msg_coumt] . value

L. Up [msg_count]. header

L. Up [msg_count]. value

Part 1 gave length to fix brackets. */

Ib, rb, rln, index, dir[4] ;

symbol[80], empty, firstL[4], lastL[4] ;

Up[ListLength], Down[ListLength];

length ;

newlb-- ; /* Delete '<' of each row. */

newrb-- ; /* Must compact final '>' */

neerb-- ; /* Delete '>' of each row. */

newlb++ ; /* Create '<' to start col. */

newrb++ ; /* Create '>' to end col. */

= HE + HC + HL + Oa ; /* ecla */

= 1 ; msg_count++ ;

= HE + HC + HR + Oa ; /* ecra */

= 1 ; msg_count++ ;

= HS + HR + HK + 15 ; /* key k0 */

= L.dir[2] ; msg_count++ ;

= HS + HR + HK + 14 ; /* key kl */

= L.index ; msg_count++ ;

= HS + HR + 01 ;

= (L.symbol[O]<<8) + L. symbol [1] ; msg_count++ ;

= HS + HR + Of ;

= newlb ; msg_count++ ;

= HS + HR + 01 ;

= newrb ; msg_count++ ;

)
L.Up[msg_count] .header = HE + HS + HR + 0a ; /* ea - ESRV by convention */

L.Up[msg_count].value = i ;

}

void PrintL() {

int msg =0, pkt_count =0, save ;

if (!L.empty) {

for (; ;) {
if (pkt_cotmt > 3*L.index+2) { save = msg ; break ; }

if ((L.Down[msg] .header&HVK) != HK) pkt_count++ ;

msg++ ;

}

/* non-empty cell catches next triple of symbol stuff */

L.symbol[0] = L.Down[save+O] .value >> 8 ;

L.symbol[1] = L.Down[save+O] .value & OxO0ff ;

L.Ib = L.Down[save+1].value ;

L. rb = L. Down [save+2] .value ;

}

/* Print out L cell contents here */

}

Figure 9. Transpose an arbitrarymatrix.

26

a closing bracket. This length is trivially calculated in a prior message wave which is not

shown.

5.4 Rotate left (by one position) within groups

This algorithm performs rotations within individual subsequences of the entire FFP

expression. Specifically, it rotates a single data value within the PEs of each subsequence,

and can be viewed as individually rotating each row in a matrix (the algorithm of the next

section could rotate matrix columns vertically, which can be viewed as rotating the rows

upwards, with the first row becoming the last). Ironically, this algorithm doesn't really

use group bits, although the opcode for rotation does in fact perform the same way.

During the first communication wave, shown in Figure 10, all values are shifted as a

single rotation. This leaves the values that were at the start of each subsequence incorrectly

placed at the end of the preceding subsequence rather than at the end of their own. A

second communication wave, shown in Figure 11, rotates just those values to the right,

over their entire subsequence, to the tail of their own subsequence. This is their proper

position.

5.5 Rotate left by k positions

This rotation algorithm differs from the one above in that it allows rotations by an

arbitrary distance. This could be used for the rotate-left function in the FP language,

which must handle shifting an entire FFP object consisting of an arbitrary number of

symbols to the other end of a sequence of such objects. It can also be used in algorithms

that simulate a mesh or torus on the physically tree-structured FFP Machine, to avoid the

full communication cost of the "north-south" communication phase [Middleton&=Smith].

In contrast to the previous rotation algorithm in which only a single message passes

through the root of the area machine network, this algorithm passes roughly as many

messages as the distance of the shift, that is, the number of symbols in the object being

shifted. This procedure works by incorporating sorting into the cumulative rotation scheme

used above. The keys allow several overlapping rotations to occur in the same message

wave, without interfering with each other.

To illustrate the operation, consider rotating a sequence of 10 letters left by 4 places,

as shown in the top part of Figure 12, using upper case to denote the initial position, and

lower case to denote the final position.

27

/* Left

struct

rotation in groups by one position - Part i: rotate entire sequence */

LcellType {

int ib, rb, rln, index, dir[4] ;

char symbol[80], empty, firstL[4], lastL[4] ;

struct PacketType Up[ListLength],

Down [ListLength] ;

};

void InitL() {

char c, brackets [80] ;

int msg_count =0, i ;

/* read local L cell data from input */

/* Send packets */

L.Up[msg_count].header = HE + HC + HL + Oa ; /* ecla */

L.Up[msg_count] .value = I ;

msg_count++ ;

if (!L.empty) {

L.Up[msg_count].header = HC + HR + 01 ; /* par suffix rotate left opcode */

L.Up[msg_count].value -- (L.symbol[O]<<8) + L.symbol[l] ;

msg_count++ ;

}
L.Up[msg.count] .header = HE + HC + HR + Oa ; /* ecra */

L.Up[msg_count].value = I ;

msg_count++ ;

L.Up[msg_count] .header = HE + HS + HR + Oa ; /* ea - ESRV by convention */

L.Up[msg_count] .value = I ;

)

void PrintL() {

int msg =0, pkt_count =0, save ;

if <!L.empty) {

for (; ;) { /, RECEIVE MESSAGES */

if (BadOrESPacket(L.Dolm[msg], (char) O) == EndStream) {

fprintf(stderr,"Filter in 7,Id hit ES too soon.\n", II) ;

break ;

}
if (pkt_count > I) { /* just grab first packet after ECL */

break ;

}
save = msg ;

if ((L.Down[msg] .header&HVK) != HK) /* Only count non keys. */

pkt_count++ ; /* Keys repeat after storage mgmt so don't count. */

msg++ ; /* deal eith next packet. */

}

/* USE MESSAGES */

L.symbol[O] = L.Down[save+O].value >> 8 ;

L.symbol[l] = L.Down[save+O] .value _ OxOOff ;

)

/* Print out L cell contents here ./

}

Figure 10. Left rotation o[groups -leftshiftby one piece.

The middle part shows the same sequence, numbered in a trivial way to separate the

symbols into the four interleaved groups that will undergo individual rotations. Below the

data, "send" is the key that will be sent with a symbol, and "recv" is the key that each

28

struct LcellType {

int

char

struct PacketType

};

void InitL() {

char c, brackets [80] ;

int msg_count, i ;

msg_count = 0 ;

Rotlag2 corrects rotlagl by shifting just the overflow atoms Tight again. */

ib, rb, rln, index, dir[4] ;

symbol[80], empty, firstL[4], lastL[4] ;

Up[ListLength],

Down[ListLength];

/* read local L cell data from input */

/* Send packets */

if (:L.empty &_ L.lastL[l]) {

L.Up[msg_count] .header = HC + HL + 02 ; /* right shift par prefix opcode */

L.Up[msg_count] .value = (L.symbol[O]<<8) + L. symbol [l] ;

msg_cotmt++ ;

}
L.Up[msg_count] .header = HE + HC + HL + Oa ; /* ecla */

L.Up[msg_count] .value = 1 ;

msg_count++ ;

L.Up[msg_count] .header = HE + HC + HR + Oa ; /* ecra */

L.Up[msg_count].value = 1 ;

msg_count++ ;

L.Up[msg_count] .header = HE + HS + HR + Da ; /* ea - ESRV by convention */

L.Up[msg_count] .value = I ;

}

void PrintL() {

int msg =O, pkt_count =O, save =0 ;

if (!L.empty) {

for (; ;) {

if (BadOrESPacket(L.Down[msg], (char) 0) == EndStream) {

fprintf(stderr,"Filter in 7,1d hit ES too soon.\n", II) ;

break ;

}
if (pkt_count > 0) { /* just grab first (CL) packet ./

/* fprintf(stderr,"Y.d filter bailed at msg _,d (pkt Y,d); kept 7,d.\n",

II, msg, pkt_count, save) ; /* */

break ;

}
save = msg ;

if ((L.Down[msg] .header_HVK) != HK) /* Only count non keys. */

pkt_count++ ; /* Keys repeat after storage mgmt so don't count. */

msg++ ; /* deal with next packet. */

)
/* USE MESSAGES */

if (L.lastL[1]) {

L.symbol[O] = L.Down[O] .value >> 8 ;

L.symbol[1] = L.Down[O] .value _ OxOOff ;

}
}

/* Print out L cell contents here */

)

Eigure 11. Le[t rotation of groups - right correction of i_nal elements.

29

A B C D E F G H I J

e f g h i j a b c d

cell A B C D E F G H I J
send 0 I 2 3 0 I 2 3 0 I
recv 0 1 2 3 0 1 0 1 2 3

e f g h i j i j c d

cell A B C D E F G H I J

send 2 3 0 i 0 1 2 3 0 1
recv 0 1 2 3 0 i 2 3 0 1

c d g h i j a b c d

Figure 12. Straightforward keys fail to rotate data correctly.

PE will be looking for as marking the packet it intends to retain. A problem exists if the

rotation distance (here, 4) does not evenly divide the length of the sequence (here, 10).

Notice that while G should receive a, the message containing i, having the same key as

a, blocks it. As an alternative, cells A, B, C and D could be sent with different keys as

shown in the bottom part of the figure. Now the problem is that c blocks e from reaching

A and c ends up in both A and I.

The solution is to use additional key values and to alter the key that the leftmost PEs

are looking for. This pattern is illustrated for this example in Figure 13. When rotating a

sequence of l atoms (the length of the entire string) by k positions, this algorithm passes

k+ remainder(l, k)+3 messages through the root of the network. This is still O(k) rather

than O(l).

cell A B C D E F G H I J.
send 2 3 4 5 0 1 2 3 0 1
recv 0 1 2 3 0 1 2 3 4 5

e f g h i j a b c d

Figure 13. Correct keys for rotation.

Figure 14 shows the actual rotation code, as FP would use it to rotate a sequence that

consisted of arbitrary objects. Before this can occur, all PEs must determine k and 1 in

order to calculate their send and recv; this is shown in Figure 15.

3O

/_' Use

struct

'send', 'recv' to rotate symbols the desired 'k' places. */

ib, rb, rln, index, dir[4] ;

symbol[80], empty, firstL[4], lastL[4] ;

Up[ListLength], Down[ListLength];

length, k, send, recv ;

= HC + HR + HK + 15 ; /* key kO */

= L.send ;

LcellType {

int

char

struct PacketType
int

};

void InitL() {

char c, brackets[80] ;

int msg_count =0, i ;

/* read local L cell data from input */

/* Send packets */

L.Up[msg_count] .header = HE + HC + HL + Oa ; /* ecla */

L.Up[msg_count].value = i ;

msg_count++ ;

if (!L.empty) {

L. Up [msg_cotmt]. header

L. Up [msg_count]. value

msg_count ++ ;

L. Up [msg_cotmt]. header

L. Up [msg_count]. value

msg_count++ ;

L.Up[msg_count].header = HC + HR + 01 ;

L.Up[msg_count].value = L.ib ;

msg_count++ ;

L.Up[msg_count].header = HC + HR + 01 ;

L.Up[msg_count].value = L.rb ;

msg_count++ ;

}
L.Up[msg_count].header = HE + HC + HR + Oa ; /* ecra */

L.Up[msg_count].value -- I ;

msg_count++ ;

= HC + HR + 01 ;

= (L . symbol [O] <<8) + L. symbol [1] ;

L.Up[msg_ount].header = HE + HS + HR + Oa ; /* ea - ESRV by convention */

L.Up[msg_cotmt].value = i ;

}

void PrintL() {

int ms8 =0, pkt_count =0, save ;

if (!L.empty) {

for (; ;) { /* RECEIVE MESSAGES */

if (pkt_count > 3*L.recv + I) { /* 3 CR packets per symbol + EOCL */

break ;

}
save = msg ;

if ((L.Dozn[msg].header_}{VK) != HK) /* Only count non keys. */

pkt_count++ ; /* Keys repeat after storage mgmt so don't count.

msg++ ; /* deal with next packet. */

}

L.symbol[O] = L.Down[save+O].value >> 8 ; /* USE MESSAGES ,/

L.symbol[1] = L.Down[save+O].value _ OxOOff ;

L.Ib = L.Down[save+1].value ;

L.rb = L.Down[save+2].value ;

}

/* Print out L cell contents here */

}

Figure 14. Rotating k places.

,/

31

/* Find 'send' and 'recv' keys to rotate sequence of 'I' symbols 'k' places. */

#include ".constants .h"

struct LcellType {

int ib, rb, rln, index, dir[4] ;

char symbol[80], empty, firstL[4], lastL[4] ;

struct PacketType Up[ListLength], Doen[ListLength] ;

int length, k ;

);

void InitL() {

char c, brackets[80] ;

int msg_count =0, i ;

/* read input L cell data following address generation */

/* Send packets ,/

L.Up[msg_count] .header =

L. Up [msg_count]. value =

msg_count++ ;

L.Up[msg.count] .header =

L. Up[msg_count] .value =

msg_count ++ ;

L.Up[msg_count] .header =

L. Up [msg_count] .value =

msg_count ++ ;

L. Up [msg_couut]. header =

L. Up [msg_count]. value =

msg_count++ ;

L. Up [msg_count]. header =

L. Up [msg_count]. value =

msg_cotmt++ ;

L.Up[msg_count] .header =

L. Up [msg_count]. value =

}

void PrintL() {

int msg =0, pkt_count =0, save =0, send =0, recv =0 ;

if (!L.empty) {

for (; ;) { /* RECEIVE MESSAGES */

if (pkt_count > 0) {

break ;

}
save = msg ;

if ((L.Down[ms_ .headerkhWK) != HK) /* Only count non keys. */

pkt_count++ ; /. Keys repeat after storage mgmt so don't count. _/

msg++ ; /* deal with next packet. */

}

HC + HL + ((II==Size-l) ? 02c : Op) ;

((II==Size-l) ? 0 : !L.empty) ;

HE + HC + HL + Oa ; /* ecla */

I ;

HE + HC + HR + Oa ; /* ecra */

I ;

HS + HR + Op ;

'L.empty kk (L.dir[O]==l) ; /* full length */

HS + HR + Op ;

!L.empty &k (L.dir[l]==l) ; /* length of Ist part */

HE + HS + HR + Oa ; /* ea - ESRV by convention */

1 ;

L.index = L.Down[save+O].value ; /* USE RETAINEDNESSAGES */

L.length = L.Doen[save+3J.value ;
L.k = L.Down[save+4].value ;

send = recv = L.index Z L.k ;

if (L.index < L.k) send = L.index + L.lengthZL.k ;

if (L.index+L.k >= L.length) recv = L.lengthZL.k + L.index + L.k - L.length ;

)

/* L cell contents printed here */

}

Figure 15. Finding k and I when rotating one FP object.

32

6 Conclusions and future work

This paper describes an executable specification for the combining network that was

designed for the FFP Machine. As a complete and definitive description, it gathers all the

details into a single document, which is a necessary precursor to any hardware implemen-

tation, and checks that they work. As an executable description it can substantiate both

the anticipated ability of the network to support certain operations that are fundamental

to the operation of the FFP Machine, and the expected simplicity of the hardware required

to implement the network.

In addition to debugging the network design, the system has provided a reasonably con-

venient environment for designing and debugging communication algorithms themselves. A

prior version provided the first working method for generating directories, and this system

quickly showed several trivial errors in detail in the transpose and rotation algorithms.

Extensions to the system are possible at various levels. Cumulative operations involv-

ing opcodes too complex to fit in the message processor can still be effectively handled, by

repeatedly shifting partial values to neighboring PEs which then perform the calculation.

This would involve, first, using the simple end packets to vote on whether the reduction

is complete (this is already available), and second, arranging that the program return the

result of the vote to the operating system to enable the program to be invoked an appro-

priate number of times. A similar need exists in some matrix multiplication operations.

This change is trivial.

A more important extension relates to the design of the receiving mechanism within

the PEs. It is entirely the responsibility of the receiving PE to detect and keep the

appropriate packets, but currently, the only facility for doing so is to count incoming

packets and at a certain point retain a few consecutive ones for use after the message wave

has completed. While arbitrary processing of incoming packets is not possible, given that

PEs must accept packets at network speeds, some extensions that are only slightly more

complicated (matching specific values in the packet stream, rather than specific positions)

appear to be sufficient to implement some interesting graph matching algorithms quickly

[Smith].

Acknowledgements

The design of the network that is simulated here was developed mainly during the

period 1982 - 1984 under the direction of Professor Mag6 and with some other students.

33

A precursor to this system wasdevelopedat that time to study algorithms and issuesin

the network design.

References

[Backus] J. Backus, "Can programming be liberated from the yon Neumann style? A

functional style and its algebra of programs", Communications of the ACM,

Volume 21 No. 8, pp. 613-641, August 1978.

[HPF] High Performance Fortran Forum, "High Performance Fortran Language Specifi-

cation", Version 1.0, May 1993.

[Mag6] G. Mag6, private communications.

[Mag6&Stanat] G. Mag6 and D.F. Stanat, "The FFP Machine", in Topics in High-Level

Language Computer Architecture, by V. Milutinovid, Computer Science Press.

[Middleton&Smith] D.J. Middleton and B.T. Smith, "FFP Machine Support [or Lan-

guage Extension", Nineteenth Hawaiian International Conference on System

Sciences. pp. 59-66. January 1986.

[Partain] W. Partain and G. Mag6, private communication.

[RP3] G.F. Pfister, "The Architecture of the IBM Research Parallel Processor Prototype

(RP3)", Nineteenth Hawaiian International Conference on System Sciences. pp.

214-221. January 1986.

[Schwartz] J.T. Schwartz, "Ultracomputers", ACM Transactions on Programming Lan-

guages and Systems, Volume 2 No. 4, pp. 484-521, October 1980.

[Smith] B.T. Smith, private communication.

34

Appendix - Additional program listings

/* Algorithm designers may change first 2 values, to vary area size. */

#define Size 32

#define LogSize 5

#define HallS (Size>>l)

#include <stdio.h>

#include <string.h>

#define ListLength (Size_40) /* 40 pkts per cell, 8 is realistic */

#define HC OxO0 /_ Cumulative 2nd ,/

#define HS Ox80 /* Simple } field _/

#define HCS 0x80 /* CS field _/

#define HL OxO0 /* Left to Right 3rd */

#define HR Ox40 /$ Right to Left } field _/

#define HLR Ox40 /* LR field _/

#define HB OxO0 /* Body Ist ,/

#define HE Ox20 /, End } field _/

#define HBE Ox20 /* BE field - "/

#define HV OxO0 /_ Value - 4th _/

#define HK OxlO /* Key } field ./

#define HVK Ox10 /* VK field - _/

#define Scarry Ox08 /_ Bit positions for state vbls */

#define Sloser Ox03

#define Smin Ox30

#define SNoLoser OxO0

#define SRLost OxOl

#define SLLost Ox02

#define SEq 0x00
#define SLess 0x10

#define SGtr 0x20

#define SNoCarry 0x00
#define SIsCarry 0x08

#define BadPacket 2

#define EndStream 1
#define NotEndStream 0

#define Oo 1
#define 02c 2

#define 01c 3
#define Om 4

#define Omc 5
#define 02 6

#define O1 7

#define Op 8
#define Opc 9
#define Oa 10
#define Ox 11

#define ValueMask

#define KeyMask

#define TypeMask

#define PacketCarry

struct PacketType {

Figure

OxOffff

OxOf

OxfO

(ValueMask+1)

unsigned char header ;

unsigned int value ;

};
16. ".constants.h"

/* State values for Loser */

/* State values for minim,,- */

/* State values for addition */

/* Qualities of a packet. */

/* Opcodes. */

/* Subfields in a packet. */

35

I*
I*
I*
I*

I*
I*
I*
I*
I*
I*
I*

*I

void
void

void
void
void
void

void
void
void

struct
struct

int
int

This file animates a set of routines that describe

an FFP Machine algorithm as distributed local actions.
It

declares arrays of the appropriate size,
defines some naming macros for the local algorithms to use, and

iterates up and down the tree once, repeating those routines.

It must be included ** AFTER ** the Lcell and Tcell definitions,and
** BEFORE ** the routines that use the naming macros.

Naming convention:
User routines should avoid variables starting with capitals.

InitL () ;

InitT () ; I* probably no use:

Lup () ;
Tup () ;
Troot () ;
Tdovn () ;

Ldovn () ;
PrintL () ;
PrintT () ;

LcellType Lcells[Size] ;
TcellType Tcells[Size] ;

debug =0 ;
II ;

#define Root

#define Self
#define LeftChildT

#define RightChildT
#define LeftChildL

#define RightChildL
#define L

Tcells[1]
Tcells[II]
Tcells[2*II]

Tcells[2*II+1]

T cells are initially empty */

/* Iterates through the tree. */
I* Used by naming macros.

/* ref values in the tree root */
/* ref values in T cell of interest */

Lcells[2*II-Size]
Lcells[2*II+l-Size]
Lcells[II]

main(argc,argv) int argc; char **argv ;

{int i,argvalue;

for(i=l;i<argc;i++){

sscanf(argv[i]+2,"Zd",&argvalue) ;

switch (argv[i] [1]){
case 'd' :

default :

fprintf(stderr,"Debug set to Zd\n", debug=argvalue) ;
break ;

fprintf(stderr,"Tree ignored bad argument Zc\n",

argvCi][l]) ;

II--)

break ;

)
fflush(stderr) ;

}
for (II = 0 ; II < Size ; II++)
for (II = 1 ; II < Size ; II++)
for (II = Size-1 ; II >= HallS ;

for (; II > 1

for (II = 2 ; II < HallS ;
for (; II < Size ;
for (II = 0 ; II < Size ;

}

Figure 17. ".ske/eton.h"

*/

InitL() ;
InitT() ;

Lup() ; I* L cell parents *I

; II--) Tup() ; /* T cell parents, not Root */
Troot() ;

II++) Tdovn() ;

II++) Ldovn() ;
II++) PrintL() ;

36

FormApproved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Publicreportingburdenfor thiscollectionofinformationisestimatedtoaverageI hourperresponse,includingthetimeforreviewinginstructions,searchingexistingdalasources.
gatheringandmaintainingthedataneeded,andcompletingandreviewin&thecollectionofinformation.Sendcommentsre&ardingthisburdenestimateoranyotheraspectofthis
collectionof informationincludingsuggestionsforreducingthisburden,toWashingtonHeadquartersServices.DirectorateforInformationOperationsandReports.1215Jefferson
DavisHighway.Suite1204,Artin_on.VA22202-4302,andtotheOfEceofManagementandBudget,PaperworkReductonProjecl(0704-0188).WashnlFon.DC20503,

]. AGENCY USE ONLY(Leaveblank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1995 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AN EXECUTABLE SPECIFICATION FOR THE MESSAGE

PROCESSOR IN A SIMPLE COMBINING NETWORK

6. AUTHOR(S)
David Middleton

7. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 95-47

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-198174

ICASE Report No. 95-47

II. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 60, 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
While the primary function of the network in a parallel computer is to communicate data between processors, it is
often useful if the network can also perform rudimentary calculations. That is, some simple processing ability in the

network itself, particularly for performing parallel prefix computations, can reduce both the volume of data being

communicated and the computational load on the processors proper. Unfortunately, typical implementations of such

networks require a large fraction of the hardware budget, and so combining networks are viewed as being impractical.

The FFP Machine has such a combining network, and various characteristics of the machine allow a good deal

of simplification in the network design. Despite being simple in construction however, the network relies on many

subtle details to work correctly. This paper describes an executable model of the network which will serve several
purposes. It provides a complete and detailed description of the network which can substantiate its ability to support

necessary functions. It provides an environment in which algorithms to be run on the network can be designed and

debugged more easily than they would on physical hardware. Finally, it provides the foundation for exploring the

design of the message receiving facility which connects the network to the individual processors.

14. SUBJECT TERMS
parallel prefix; combining network

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

NSN 7540-01-280-SS00

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF THIS PAGE OF ABSTRACT
Unclassified

15. NUMBER OF PAGES
36

16. PRICE CODE
A03

20. LIMITATION
OF ABSTRACT

Standard Form 298(Rev. 2-89)
PrescribedbyANSIStd.Z39-18
298-102

